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Abstract
Propagation of ion-acoustic waves in a multicomponent plasma consisting of
warm positive ions with stream velocity and two-temperature electrons has
been theoretically investigated. New analytical solutions with sufficient and
necessary conditions are obtained for the existence of ion-acoustic solitary
waves in the plasma. It is seen that the drifting ions and two temperature
electrons have key roles on the formation of ion-acoustic solitary waves in a
multicomponent plasma. The critical values of the ion temperature and phase
velocity of the solitary waves have been numerically estimated, which would
be applicable to various physical situations.

PACS numbers: 52.35.Fp, 52.35.Mw, 52.35.Sb, 52.60.+h

1. Introduction

Studies of nonlinear characteristics of ion-acoustic waves in plasma are the subject of intense
research during the past few years. Many interesting results are reported by various authors
working in the field of solitary waves, shocks, breaking of waves, self-focusing, modulational
instabilities etc which have wide applications to various physical situations in laboratory and
space plasma. In recent years, much attention has been paid to the study of ion-acoustic solitary
waves and double layers in plasma consisting of electrons at two different temperatures. These
are observed in space [1] and also found in double-plasma (DP) machines [2], hot cathode
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discharges [3] and thermonuclear plasma [4]. Jones et al [5] were the first to investigate the ion-
acoustic waves in a plasma consisting of ions and two types of electrons with different thermal
effects. They considered a simple hot cathode discharge plasma where hot electrons were
produced due to filament heating. Assuming the electrons of two Maxwellian distributions,
Jones et al [5] derived the linear dispersion relation for the ion-acoustic waves in the presence
of two electron temperatures. They observed that even a small percentage of cold electron
concentration may predominate the ion acoustic speed, especially if the difference between
the two electron temperatures increases. The theoretically predicted phase velocity of the
wave was found to be in good agreement with the experimentally measured value. Goswami
and Buti [6] following the works of Jones et al [5] derived the Korteweg–deVries (K–dV)
equation for a cold ion plasma containing double Maxwellian electrons using the reductive
perturbation method and obtained the corresponding ion-acoustic solitary wave solution. It
was observed that the existence of the domain in an ion-acoustic solitary wave is rather limited
by the respective concentrations and temperatures of the two electron components according
to the theory of weakly nonlinear solutions. They concluded that the effect of cold electrons
increases with the temperature of hot electrons which produce less dispersion to inhibit solitary
wave formation. Following Goswami and Buti [6], several authors [7–16] investigated the
solitons and other aspects of ion-acoustic waves in two-electron temperature plasmas and
obtained important results which are applicable to various physical situations. The effects
of two-temperature electrons on ion-acoustic waves described by Barthomier et al [17] are
very interesting. They showed that the main characteristics of ion-acoustic solitary waves
and weak double layers observed by the Swedish satellite Viking can be reproduced assuming
the presence of two electron components in the auroral plasma. With the help of Sagdeev
potential they have shown the characteristics of the ion-acoustic solitary waves excited in such
a plasma. From their study, it was observed that the interactions between the hot and the
cold electron component in the presence of a finite ion temperature produce rarefaction of
the localized density. Such nonlinear structures exist in a more extended range of plasma
parameters than that previously studied in the small amplitude limiting case using the
K–dV equation. They have also found that the density of the cold population must always be
smaller than the hot one, where the hot-to-cold temperature ratio must be greater than ∼10.
The characteristics of these structures are quite different from those obtained in the small
amplitude limiting case and can better reproduce the Viking observations in terms of their
velocity, width and amplitude scales. Subsequently, Kourakis and Shukla [18] carried out
the theoretical and numerical studies for the nonlinear amplitude modulation of ion-acoustic
waves propagating in an unmagnetized, collisionless, three-component plasma composed of
inertial positive ions moving in a background of two thermalized electron populations. They
considered the perturbations oblique to the carrier wave propagation direction. It was shown
from the stability analysis based on a nonlinear Schrödinger-type equation that the wave
may become unstable and the stability criteria depend on the angle between the modulation
and propagation directions. Moreover, different types of localized excitations (envelope
solitary waves) were shown to exist. The results are in qualitative agreement with satellite
observations in the magnetosphere. Another interesting result is found in the case of a plasma
consisting of nonisothermal electrons. In the presence of resonant electrons, the plasma
behaves nonisothermally. The resonant electrons strongly interact with the wave during
its evolution and therefore cannot be treated assuming the Boltzmann distribution for the
electron density as considered in an isothermal plasma. Schamel [19, 20] first considered the
nonisothermality of electrons in a plasma and showed that an ion-acoustic wave in the lowest
order has a new profile instead of the usual profile. Later, Das et al [21] and the other authors
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[22, 23] assumed Schamel’s plasma model and investigated the effects of nonisothermality of
two-temperature electrons on the formation of ion-acoustic solitary waves.

But, the exact solution of the nonlinear equation for the ion-acoustic solitary waves in
multicomponent plasma consisting of positive ions and electrons (isothermal or nonisothermal)
at two different temperatures has not yet been obtained in the previous works. Recently, Ghosh
et al [24] have obtained the exact solution including some necessary and sufficient conditions
for the existence of solitary waves in a magnetized collisionless plasma consisting of positive
ions and single temperature electrons. As the presence of two-temperature electrons in plasma
gives some interesting characteristics on the solitary waves, the present paper deals with an
analytical study to obtain some necessary and sufficient conditions for the existence of ion-
acoustic solitary wave in a plasma consisting of electrons at two different temperatures and
warm drift ions. The paper is organized as follows: in section 2, the basic equations and the
formulation of the problem are described. In section 3, the necessary and sufficient conditions
for the existence of ion-acoustic solitary waves in a plasma consisting of two-temperature
electrons are obtained. Numerical estimations are made for the critical values of the phase
velocity of the ion-acoustic solitary waves in a model plasma and the results are graphically
discussed in section 4.

2. Formulation

We consider a collisionless, unmagnetized and fully ionized plasma consisting of warm drift
positive ions and two populations of Boltzmann electrons which are separately in thermal
equilibrium. The normalized basic equations in one dimension governing such a system are

∂n

∂t
+

∂

∂x
(nu) = 0 (1)

∂u

∂t
+ u

∂u

∂x
+

σ

n

∂p

∂x
= −∂φ

∂x
(2)

∂p

∂t
+ u

∂p

∂x
+ 3p

∂u

∂x
= 0 (3)

∂2φ

∂x2
= ne − n. (4)

The equations are dimensionless, where

ne = nec + neh, nec = µ e(φ/µ+νβ), neh = ν e(βφ/µ+νβ), µ + ν = 1,

σ = Ti/Tef , β = Tec/Teh, Tef = TecTeh/(µTec + νTeh), β < 1.

In equations (1)–(4), the non-dimensional parameters n, u, p are the number density,
velocity and pressure of the ions; φ is the electrostatic potential; nec and neh are number
densities of cool and hot electrons respectively, with µ and ν their initial number densities. σ

is the ion temperature. Tec and Teh are the temperatures of cool and hot electrons respectively.
The velocity u has been normalized by (KBTef /m)1/2,m being the ion mass. The densities
n, nec and neh are normalized by the equilibrium plasma density n0. The space x and time t are
normalized by (4πe2n0/KBTef )−1/2 and (m/4πe2n0)

1/2 respectively, whereas the potential φ

is normalized by KBTef /e,KB being the Boltzmann constant.
It is to be mentioned that if σ = 0 in equations (1)–(4), a set of basic equations is obtained

which describe a system of collisionless plasmas composed of cold ions and two types of
electrons (hot and respectively cold). These types of basic equations had been used by Buti
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[25], Nejoh [26] and others for the study of ion-acoustic solitary waves in plasma. But, when
we set µ = 1, ν = 0 and σ �= 0 in equations (1)–(4), we obtain a system of basic equations
governed by a collisional plasma with a mixture of warm ion-fluid and single component hot
isothermal electron, which were used by Roychowdhury and Bhattacharya [27] for the study
of ion-acoustic solitary waves in the absence of drift ions (i.e. u0 = 0).

Now, for the present study, it is assumed that the basic equations are supplemented by the
following boundary conditions as |x| −→ ∞,

n −→ 1, u −→ u0, p −→ 1, φ −→ 0. (5)

To study the ion-acoustic solitary waves in the plasma by using Sagdeev’s pseudopotential
[28] approach, we make the variables depending on a single independent variable η defined
by

η = x − V t (6)

where ‘V’ is the velocity of solitary wave.
Therefore, equations (1)–(3) yield

−V
dn

dη
+

d

dη
(nu) = 0 (7)

(u − V )
du

dη
+

σ

n

dp

dη
= dφ

dη
(8)

(u − V )
dp

dη
+ 3p

du

dη
= dφ

dη
. (9)

Now, integrating (7) and using the boundary conditions (5) one can obtain

n = (V − u0)

(V − u)
. (10)

Similarly, integrating (9) and using the same boundary conditions,

p = (V − u0)
3

(V − u)3
. (11)

Now, using (10) in (8) we obtain after integration

2φ(u) = 2uV − u2 − 2u0V + u2
0 +

3σpu

2(V − u0)
+ 3σ

(
1 − pV

V − u0

)
. (12)

Again, using (6) in (4) we get

d2φ(u)

dη2
= ne − n. (13)

Now, using equations (10), (11) and (12), equation (13) reduces to

d2φ(u)

dη2
= G(u), (14)

where

G(u) = µ exp(φ/µ + νβ) + ν exp(βφ/µ + νβ) − (V − u0)

(V − u)
(15)

and

φ(u) = 1

2

[
(V − u0)

2 − (V − u)2 +
3σu

(V − u0)

(
V − u0

V − u

)3

− 3σ

{
1 − V

(V − u0)

(
V − u0

V − u

)3
}]

. (16)
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Consequently,

φ′(u) = (V − u) − 3σ(V − u0)
2

(V − u)3
. (17)

Integrating equation (14) we find(
dφ

du

)2 (
du

dη

)2

= H(u) − K, (18)

where

H(u) = 2
∫

G(u)
dφ

du
(19)

and ‘K’ is an arbitrary integration constant.
Now, using (15) and (16), it is easy to integrate (19) and obtain

H(u) = 2

[
(µ + νβ)

(
µ · e

φ

µ+νβ +
ν

β
· e

βφ

µ+νβ

)
− (V − u0)u − σ

(
V − u0

V − u

)3
]

. (20)

It is to be mentioned that the phase velocity of the solitary wave V is greater than the the
velocity of the ion-acoustic wave, i.e. V > u.

3. Analytical study

For the ion-acoustic solitary wave in an isothermal two-temperature-electron plasma with a
warm positive ion, the physically admissible solution of equation (18) is obtained with some
special observations:

(1)
( dφ

du

)2( du
dη

)2
must be non-negative,

(2) u and
(

du
dη

)
must be bounded.

From the expressions of φ and G given in (12) and (13), it is easy to make the following
observations:

Observation 1. G(u0) = 0.

Observation 2. φ(u0) = 0.

Observation 3. If (i) (V − u0)
2 < 3σ, φ′(u) < 0 for u0 � u < V , (ii) (V − u0)

2 >

3σ, φ′(u) > 0 for u0 � u < u′ and (iii) φ′(u) < 0 for v′ < u < V , where u′ is given by
φ′(u′) = 0.

Observation 4. If (i) (V − u0)
2 < 3σ, φ′(u) > 0 for V < u � u0, (ii) (V − u0)

2 >

3σ, φ′(u) > 0 for V < u < u′, and (iii) φ′(u) < 0 for u′ < u � V , where u′ is given by
φ′(u′) = 0.

Note. There exists no physical solution of equation (15) if φ′(u) < 0 for u0 < V and
φ′(u) > 0 for u0 > V .

Therefore, for the physical solution of equation (15) we need the following requirements.

Requirement 1. There exists umax (or umin) such that

H(u0) = H(umax) = K, for u0 < umax < u′

or, H(u0) = H(umin) = K, for u′ < umin < u0.
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Requirement 2.
H(u) > K for either u0 < u < umax

or, umin < u < u0.

Our next task is to obtain simple conditions (either necessary or sufficient) for the
requirements to be fulfilled. We establish the following theorems.

Theorem 1. Equation (18) will admit a real and bounded solution if and only if
(i) V > u0 +

√
1 + 3σ , for V > u0 and

(ii) u0 > V +
√

1 + 3σ , for V < u0.

Proof. Part-I. Conditions (i) and (ii) are necessary. If requirement-2 is fulfilled, one has
H(u) > H(u0) for u = u0 + ε, ε (>0), however small, an arbitrary number. It immediately
follows that

H ′(u0) > 0. (21)

Using observation-1 we get from (19) and (21),

G′(u0) · φ′(u0) > 0. (22)

Since by virtue of observation-3 and observation-4,
φ′(u0) > 0 for u � u < u′ and φ′(u0) < 0 for u′ < u < u0, we obtain from (22), (15)

and (17) after some calculation

V > u0 +
√

1 + 3σ , for V > u0

and

u0 > V +
√

1 + 3σ , for V < u0. �
Proof. Part-II. Conditions (i) and (ii) together are sufficient. We assume that conditions (i)
and (ii) of theorem 1 are to be satisfied. Then from conditions (i) and (ii), we obtain

G′(u0) > 0, for V > u0 (23a)

G′(u0) < 0, for V < u0. (23b)

From (23a) and (23b) using the observation-1, observation-3 and observation-4, we obtain

H ′′(u0) > 0. (24)

From inequality (24) and the fact that H ′(u0) = 0, it follows that

H(u0 + ε) > H(u0) (25)

for ε (>0), however small, an arbitrary number. �
Theorem 2. A sufficient condition that equation (15) will admit a real and bounded solution
is determined by H(u′) − H(u0) < 0.

Proof. For a physically admissible solution it is obvious that H ′(u) � 0 for u = u0 + ε, where
ε (>0), however small, an arbitrary number. �

It follows that H(u0 + ε) > H(u0).
Also, from the conditions that

H(u′) < H(u0),

there exists a point umax (say) (or umin (say)) between u0 and u′ such that

H(umax) = H(u0), for u0 < u < umax

or,

H(umin) = H(u0), for umin < u < u0.

Consequently, there exists u∗ between u0 and umax such that H(u∗) = 0.
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3.1. Existence of solitary wave solution

Using equation (20) the condition H(u′) − H(u0) < 0 can be written as

µ · (ep − 1)

p
+ (1 − µ) · (eβp − 1)

βp
<

2

3

[
1 +

2

(1 + q)2

]
(26)

where

p = [(V − u0)
2 − √

3σ ]2

2(µ + νβ)
and q =

[
3σ

(V − u0)2

] 1
4

.

Since β < 1 and µ < 1, the above inequality is reduced to

(eβp − 1)

βp
<

2

3

[
1 +

2

(1 + q)2

]
. (27)

Substituting u0 = 0 into (26), one gets

e
(V −√

3σ)2

2 − 1 − V 2

[
1 +

σ

V 2
− 4

3

( σ

V 2

) 1
4

]
< 0. (28)

It is to be noted that (27) is the condition for the existence of a solitary-wave solution,
obtained by Roychowdhury and Bhattacharyya [27].

Further, substituting σ = 0 into (27), we obtain[
e

V 2

2 − 1 − V 2
]

< 0.

Now, [e
V 2

2 − 1 − V 2] < 0 when V < κ , κ being the solution of e
V 2

2 = 1 − V 2.

Taking κ ≈ 1.6, we find V < 1.6.
Also, from inequality (i) of theorem 1,

V > 1 for σ = 0, u0 = 0.

Therefore,

1 < V < 1.6.

The above condition was established by Sagdeev [28] for the existence of solitary wave
solution in a non-drifting plasma.

Theorem 3. For the given values of σ,µ, ν and β, a necessary condition for equation (15) to
admit a physical and bounded solution is given by

V − u0 <

[√
3σ +

√
2Z0

β
(µ + νβ)

]
,

Z0 satisfying the equation eZ = 1 + 2Z; if the condition of the theorem 2, that is,
H(u′) − H(u0) < 0, holds.

Proof. Using (17) one can write the inequality H(u′) − H(u0) < 0 as

2

[
(µ + ν)

{
µ(ep − 1) +

ν

β
(eβp − 1)

}
− (V − u0)

{
1 +

σ

(V − u0)2
− 4q

3

}]
< 0 (29)

where u′ = (V −
√√

3σ · √
V − u0) is a solution of the equation φ′(u′) = 0. p and q have

been defined earlier. Substituting

(V − u0) −
√

3σ = X (30a)
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and (
3σ

(V − u0)2

)1/4

= Y, (30b)

the inequality (28) reduces to

2

[
(µ + ν)

{
µ

(
e

X2

2(µ+νβ) − 1
)

+
ν

β

(
e

βX2

2(µ+νβ) − 1
)} − X2

3

{
1 +

2

(Y + 1)2

}]
< 0. (31)

�

The necessary condition of the theorem will be established if we find the condition
(or conditions) for which [H(u′) − H(u0)]min < 0 holds. Now, the minimum value of
[H(u′) − H(u0)] is

2

[
(µ + ν)

{
µ

(
e

X2

2(µ+νβ) − 1
)

+
ν

β

(
e

βX2

2(µ+νβ) − 1
)
1

}
− X2

]
which is obtained by putting Y = 0, i.e. the least value of Y.

The inequality [H(u′) − H(u0)]min < 0 can be written as

µ · (eZ − 1)

Z
+ (1 − µ)

(eβZ − 1)

βZ
< 2 (32)

where

Z = X2

2(µ + νβ)

X = (V − u0)
2 −

√
3σ .

Let us choose Z < Z0/β, where Z0 is a solution of eZ = 1 + 2Z.
Then, it follows that the inequality (31) holds provided

Z <
Z0

β
. (33)

Using (29) and (32), one can obtain from (29)

V − u0 <

[√
3σ +

√
2Z0

β
(µ + νβ)

]
.

Hence, the condition is necessary.

Note. V − u0 < [
√

3σ +
√

2Z0
β

(µ + νβ)] is a necessary condition of H(u′) − H(u0) < 0, but

not sufficient.

Theorem 4. A sufficient condition for equation (18) to admit a physical and bounded solution
is that for fixed values of β (<1) and sufficiently small values of µ (<1)

µ · (eZ − 1)

Z
+ (1 − µ)

(eβZ − 1)

βZ
<

2

3

[
1 +

2

(1 + Y )2

]
,

if the condition of theorem-2, that is, H(u′) − H(u0) < 0 holds.

Proof. The condition H(u′) − H(u0) < 0 can be written as

µ · (eZ − 1)

Z
+ (1 − µ)

(eβZ − 1)

βz
<

2

3

[
1 +

2

(1 + Y )2

]
. (34)
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Since β < 1 and µ < 1, then (eβZ−1)

βz
< (eZ−1)

Z
. Therefore, from (34) it follows that

(eβZ − 1)

βZ
<

2

3

[
1 +

2

(1 + Y )2

]
. (35)

�

We see that if Y < 1, the inequality (35) holds for β → 0. Consequently, for sufficient
small values of β, the inequality (35) holds good. This means that the inequality (34) holds
for µ = 0, if one fixes the sufficiently small value of β.

Therefore, for a sufficiently small value of µ, the inequality (34) holds for fixing the
values of β.

Note that

µ · eZ − 1

Z
+

ν

βZ
<

2

3

[
1 +

2

(1 + Y )2

]

is a sufficient condition of [H(u′) − H(u0)] < 0.

4. Discussion and conclusion

In the present investigation, we have theoretically investigated the ion-acoustic solitary waves
in a one-dimensional model of plasma consisting of an ion component, drifting with some
velocity, and a two-temperature electron component. The requirements for the existence of
a solitary solution are derived for this model. The conditions for the existence of real and
bounded solutions of equation (18) are obtained in an exact form of the electrostatic potential
(φ). The necessary conditions are given by theorems 1 and 3 while theorems 2 and 4 give
simpler sufficient conditions. We see from theorem 1 that the phase velocity (V ) satisfies
two inequalities for V > u0 and V < u0. From the inequality H(u′) − H(u0) < 0 we
have established the existence of the physically admissible solitary wave solution for a plasma
consisting of two-temperature electrons and drift ions. To see the effects of u on H for different
values of µ, β, φ, σ and u0, graphs are plotted as shown in figures 1–5 considering a model
plasma. In figure 1, it is seen that H(u) decreases as u increases and H(u) is large for
large values of µ. Figure 2 shows that H(u) also decreases with the increase of u, but H(u)

for β = 0.36 is smaller than its value for β = 0.18. Again, when β is larger than 0.36,
H(u) increases and finally for β = 0.9H(u) attains a value which is larger than its value for
β = 0.18. In figure 3 the variation of H(u) with u for different values of σ is shown. The
figure shows a continuous decrease of H(u) with the increase of u for a small value of σ . For
large values of β, however H(u) decreases with the increase of u up to a certain value and
then starts to increase with the increase of u. The effects of φ on the variation of H(u) with u
are shown in figure 4. It is observed that H(u) is large for large values of φ. Moreover, H(u)

decreases with the increase of u. The variations of H(u) with u for different values of u0 are
shown in figure 5. It is seen that H(u) decreases with the increase of u and H(u) is large for
large values of u0.

To get some ideas about the lower and upper limits of the phase velocity V , numerical
estimations are made considering a model plasma. The numerical results are given in
tables 1, 2 and 3. It is observed that the upper and lower values of the phase velocity V

of the wave in a drift plasma are much different from the values obtained by earlier authors
in case of nondrifting plasma. Neglecting the drift motion of the ions (i.e. u0 = 0) and
considering the presence of only one component electron in the plasma, the values of the
upper and lower limits of the phase velocity are the same as obtained by Roychowdhury and
Bhattacharya [27]. Further, for σ = 0, the limiting value of the phase velocity V reduces
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H
1 j,

H
2 j,

H
3 j,

H
4 j,

uj

0 0.05 0.1 0.15 0.2
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 1. Variation of H for different values of u and µ: solid line for µ = 0.02, o’s line µ = 0.04,
box’s line for µ = 0.06 and +’s line for µ = 0.08. The values of other parameters of the plasma
are: σ = 0.01, β = 0.2, φ = 0.001, V = 2.6, u0 = 0.4.

Table 1. The limiting values of V for different µ.

µ Limiting values of V

0.03 1.437 < V < 2.661
0.06 1.437 < V < 2.993
0.09 1.437 < V < 3.284
0.12 1.437 < V < 3.545
0.15 1.437 < V < 3.785
0.18 1.437 < V < 4.007
0.21 1.437 < V < 4.216
0.24 1.437 < V < 4.413
0.27 1.437 < V < 4.6
0.3 1.437 < V < 4.778

σ = 1/40, β = 1/20, u0 = 0.4, z0 = 1.257.

Table 2. The limiting values of V for different σ .

σ Limiting values of V

1/10 1.44 < V < 4.515
1/20 1.372 < V < 4.355
1/30 1.349 < V < 4.284
1/40 1.337 < V < 4.241
1/50 1.33 < V < 4.212
1/60 1.325 < V < 4.191
1/70 1.321 < V < 4.174
1/80 1.319 < V < 4.161
1/90 1.317 < V < 4.15
1/100 1.315 < V < 4.141

µ = 0.15, β = 1/30, u0 = 0.3, z0 = 1.257.
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Figure 2. Variation of H for different values of u and β: solid line for β = 0.18, o’s line β = 0.36,
box’s line for β = 0.72 and +’s line for β = 0.9. The values of other parameters of the plasma are:
σ = 0.01, µ = 0.15, φ = 0.001, V = 1.8, u0 = 0.7.

Table 3. The limiting values of V for different β.

β Limiting values of V

1/10 1.449 < V < 3.147
1/20 1.449 < V < 3.827
1/30 1.449 < V < 4.384
1/40 1.449 < V < 4.866
1/50 1.449 < V < 5.298
1/60 1.449 < V < 5.692
1/70 1.449 < V < 6.058
1/80 1.449 < V < 6.4
1/90 1.449 < V < 6.723
1/100 1.449 < V < 7.029

µ = 0.15, σ = 1/30, u0 = 0.4, z0 = 1.257.

to the Sagdeev’s formula [27]. It is to be noted that the necessary conditions are obtained in
terms of the velocity of ion-acoustic wave u instead of the number density of the ions (n) or
the electrostatic potential φ, because the drift velocity of the ions (u0) is considered in the
plasma. However, the necessary and sufficient conditions in terms of the density of ions or
electrostatic potential may be obtained following our present analysis. One may find that the
works of Kourakis and Shukla [18] are different from our analysis. Modulation of ion-acoustic
waves and excitation of envelope solitons in a two-electron-temperature plasma are studied by
Kourakis and Shukla [18]. But, the motivation of the present study is to obtain the necessary
and sufficient conditions for the excitation of ion-acoustic solitary waves in a plasma consisting
of two-temperature electrons and warm drift ions. In this regard, it is to be mentioned that
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Figure 3. Variation of H for different values of u and σ : solid line for σ = 0.02, o’s line σ = 0.04,
box’s line for σ = 0.06 and +’s line for σ = 0.08. The values of other parameters of the plasma
are: µ = 0.1, β = 0.5, φ = 0.001, V = 2.6, u0 = 0.4.
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Figure 4. Variation of H for different values of u and φ: solid line for
φ = 0.18, o’s line for φ = 0.36, box’s line for φ = 0.72 and +’s line for φ = 0.9. The values of
other parameters of the plasma are: µ = 0.15, β = 0.1, σ = 0.03, V = 2.6, u0 = 0.8.

drift velocity of the ions has important role when ion-acoustic solitary waves are studied in
relativistic plasma. Das and Paul [29] showed that the relativistic effect would be introduced
on the ion acoustic solitons only in the presence of streaming of ions in the plasma. The
effect of magnetic field on the excitation of ion-acoustic solitary waves in plasma consisting
of drift ions and two-temperature electrons would give interesting results particularly under
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Figure 5. Variation of H for different values of u and u0: solid line for u0 = 0.1, o’s line u0 = 0.3,
box’s line for u0 = 0.6 and +’s line for u0 = 0.9. The values of other parameters of the plasma are:
σ = 0.001, µ = 0.15, β = 0.1, φ = 0.01, V = 2.5.

Table 4. The limiting values of V for different u0.

u0 Limiting values of V

0.1 1.137 < V < 4.041
0.2 1.237 < V < 4.141
0.3 1.337 < V < 4.241
0.4 1.437 < V < 4.341
0.5 1.537 < V < 4.441
0.6 1.637 < V < 4.541
0.7 1.737 < V < 4.641
0.8 1.837 < V < 4.741
0.9 1.937 < V < 4.841
1.0 2.037 < V < 4.941

µ = 0.15, σ = 1/40, β = 1/30, z0 = 1.257.

the necessary and sufficient conditions. Theoretical investigation on the ion-acoustic solitary
wave considering these parameters is in progress and would be communicated shortly.
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